Mitochondrial genetic profile of the Yoruba population from Nigeria

a Molecular Genetics Lab, Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
b DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Brazil
c DNA Forensic Laboratory, Argentinean Forensic Anthropology Team (EAAF), Córdoba, Argentina
d Molecular Biology Research Laboratory, Lagos University Teaching Hospital (LUTH), Lagos, Nigeria
e FCIDD Annex, Nigeria Police Force, Lagos, Nigeria

ARTICLE INFO

Keywords:
Nigeria
Yoruba
mtDNA
Control region
Database

ABSTRACT

Nigeria is located in the Gulf of Guinea, also known as the “giant of Africa”, being the seventh most populated country in the world. The territory has a high genetic and cultural diversity. Yoruba is the second major ethnic group (and the most spoken language), and its population is concentrated in the southern region of the country. Aiming the elaboration of an accurate forensic mitochondrial DNA database for this region, the mtDNA control region was analysed from 71 Yoruba individuals. 65 unique haplotypes was found resulting in a haplotype diversity of 0.9976 ± 0.0028. FST genetic distances were calculated, including previously published data from North, East, West Central and Southwest African populations. No significant differences were observed between Yoruba and the Nigerian population from the 1000 Genome project database (FST = -0.00148, p = 0.5598) and with the geographically close population of Ghana (FST = 0.0124, p = 0.01386). The Yoruba population reported in this study have a mitochondrial genetic profile similar to populations of the West Africa region, probably due to continuous gene flow and ethnic affinities with these neighbouring countries.

1. Introduction

More than 500 ethnic/linguistic groups inhabit the territory of present-day Nigeria. Yoruba (speaking a language that belongs to Niger-Congo linguistic family) is the second major ethnic group and occupy the southern region of Nigeria [1]. In the present day, after numerous divisions and political influences, the Yoruba is the main ethnic group in the states of Ekiti, Lagos, Ogun, Ondo, Osun and Oyo among others. They spread out to other African countries such as Egypt, Ghana, Togo, Sierra Leone, Burkina Faso, Ivory Coast and Liberia [2]. Because of the high genetic diversity found in Africa, it is common to find populations in the same country that are very genetically distant from each other. Thus, it is important to establish forensic databases that accurately represent all regions from each country. To evaluate and increase the maternal genetic knowledge of populations from sub-Saharan Africa, we analysed the genetic profile of mitochondrial DNA in the Yoruba from Nigeria.

2. Materials and methods

Bloodstains from 71 individuals belonging to the Yoruba ethnic group (Nigeria) were collected under informed consent. These samples were previously typed for Y chromosome STRs [3]. The mtDNA control region segment was amplified in a single reaction and the amplification products were incubated with ExoProStar reagent for purification. Sequencing was achieved with BigDye Terminator v3.1 cycle Sequencing kit (AB) using the primers described in [4]. Post-sequencing purification was performed with Sephadex columns. Fragments separation and detection were obtained by capillary electrophoresis on an ABI 3500. The sequences were analyzed on Sequencing Analysis v.5.2 software and compared with rCRS on SeqScape v.2.7 (AB) software, following the ISFG recommendations for haplotype classification [5]. Haplogroups were assign on EMPOP database v4/R12 and confirmed manually on PhyloTree Build 17. Haplogroup frequencies were calculated by direct counting. Haplotype diversity values, pairwise genetic distances and non-differentiation probabilities were calculated using the Arlequin software [6].

3. Results and discussion

From the 71 Yoruba samples analysed, 65 unique haplotypes were found resulting in a haplotype diversity of 0.9976 ± 0.0028. The
haplotype mismatch distribution showed a unimodal representation with a high mean number of pairwise differences (13.86) representing the presence of distantly related haplotypes. Published mtDNA control region from samples from North, East, West Central and Southwest African populations [7–14] were used for comparative purposes. The FST pairwise genetic distances calculated (disregarding indel positions 16193.xC, 309.xC, 315.xC, 523-524del, 524.xC and 573.xC) showed no significant differences between the Yoruba sample from this study and the Nigerian samples from the 1000 Genome project database (FST = -0.00148, p = 0.5598), which also belong to the Yoruba ethnic group [12]. Furthermore, both Yoruba samples had low FST genetic distances and high probability of non-differentiation with the population from Ghana, a close geographic country (see Table 1). As expected, all haplotypes belong to African haplogroups, distributed among branches L0 to L4 as described in Fig. 1.

4. Conclusions

The results of this study showed a high diversity of mtDNA lineages in the Yoruba population from Nigeria, which showed a mitochondrial genetic profile similar to other populations belonging to West Africa region, probably due to continuous gene flow and ethnic affinities with these neighbouring populations. Future studies on other ethnic groups from Nigeria are required in order to disclose the genetic structure of the country, crucial for the implementation of forensic databases.

Role of funding

LG was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (ref. 305330/2016-0). FS was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001.

Declaration ofCompeting Interest

None

Acknowledgements

We thank all of the sample donors from Nigeria for their contributions to this work and all of the people who helped with sample collection: Molecular Biology Research Laboratory, Lagos University Teaching Hospital (LUTH), Lagos, Nigeria, FCIID Annex, Nigeria Police Force, Lagos, Nigeria.

References

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Yoruba</th>
<th>Marrocos</th>
<th>Kenya</th>
<th>Uganda</th>
<th>Guinea Bissau</th>
<th>Ghana</th>
<th>Khoesan Angola</th>
<th>Mozambique</th>
<th>Nigeria 1000g</th>
<th>Gambia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoruba</td>
<td>–</td>
<td>< 5E-06</td>
<td>< 5E-06</td>
<td>< 5E-06</td>
<td>0.01386 ± 0.0013</td>
<td>< 5E-06</td>
<td>< 5E-06</td>
<td>0.55985 ± 0.0047</td>
<td>0.00099 ± 0.0003</td>
<td></td>
</tr>
<tr>
<td>Marrocos</td>
<td>0.07498</td>
<td>< 5E-06</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>0.06518</td>
<td>0.12018</td>
<td>< 5E-06</td>
<td></td>
</tr>
<tr>
<td>Uganda</td>
<td>0.03719</td>
<td>0.09567</td>
<td>0.02678</td>
<td>< 5E-06</td>
<td>< 5E-06</td>
<td>< 5E-06</td>
<td>< 5E-06</td>
<td>< 5E-06</td>
<td>< 5E-06</td>
<td></td>
</tr>
<tr>
<td>Guinea Bissau</td>
<td>0.04366</td>
<td>0.12153</td>
<td>0.07533</td>
<td>0.05960</td>
<td>< 5E-06</td>
<td>< 5E-06</td>
<td>< 5E-06</td>
<td>< 5E-06</td>
<td>< 5E-06</td>
<td></td>
</tr>
<tr>
<td>Ghana</td>
<td>0.01235</td>
<td>0.11377</td>
<td>0.09668</td>
<td>0.06212</td>
<td>0.03814</td>
<td>< 5E-06</td>
<td>< 5E-06</td>
<td>< 5E-06</td>
<td>< 5E-06</td>
<td></td>
</tr>
<tr>
<td>Khoesan Angola</td>
<td>0.33087</td>
<td>0.40403</td>
<td>0.29766</td>
<td>0.25342</td>
<td>0.34078</td>
<td>0.31302</td>
<td>< 5E-06</td>
<td>< 5E-06</td>
<td>< 5E-06</td>
<td></td>
</tr>
<tr>
<td>Mozambique</td>
<td>0.08054</td>
<td>0.17539</td>
<td>0.05889</td>
<td>0.03673</td>
<td>0.08437</td>
<td>0.09922</td>
<td>0.24161</td>
<td>< 5E-06</td>
<td>< 5E-06</td>
<td></td>
</tr>
<tr>
<td>Nigeria 1000g</td>
<td>0.08055</td>
<td>0.09722</td>
<td>0.06167</td>
<td>0.03189</td>
<td>0.03838</td>
<td>0.10352</td>
<td>0.29108</td>
<td>0.05823</td>
<td>< 5E-06</td>
<td></td>
</tr>
<tr>
<td>Gambia</td>
<td>0.02083</td>
<td>0.10216</td>
<td>0.10690</td>
<td>0.07003</td>
<td>0.03240</td>
<td>0.02152</td>
<td>0.34865</td>
<td>0.12059</td>
<td>0.02828</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. mtDNA haplogroups frequencies in Yoruba sample.

